Statistical inference of time-varying single-index coefficient models for locally stationary time series

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inference on stochastic time-varying coefficient models

Recently there has been considerable work on stochastic time-varying coefficient models as vehicles for modelling structural change in the macroeconomy with a focus on the estimation of the unobserved sample path of time series of coefficient processes. The dominant estimation methods, in this context, are various filters, such as the Kalman filter, that are applicable when the models are cast ...

متن کامل

Statistical Inference for Varying Coefficient Models

This dissertation contains two projects that are related to varying coefficient models. The traditional least squares based kernel estimates of the varying coefficient model will lose some efficiency when the error distribution is not normal. In the first project, we propose a novel adaptive estimation method that can adapt to different error distributions and provide an efficient EM algorithm ...

متن کامل

Robust Inference for Time-Varying Coefficient Models with Longitudinal Data

Time-varying coefficient models are useful in longitudinal data analysis. Various efforts have been invested for the estimation of the coefficient functions, based on the least squares principle. Related work includes smoothing spline and kernel methods among others, but these methods suffer from the shortcoming of non-robustness. In this paper, we introduce a local M-estimation method for esti...

متن کامل

Nonparametric regression for locally stationary time series

In this paper, we study nonparametric models allowing for locally stationary regressors and a regression function that changes smoothly over time. These models are a natural extension of time series models with time-varying coefficients. We introduce a kernel-based method to estimate the time-varying regression function and provide asymptotic theory for our estimates. Moreover, we show that the...

متن کامل

Nonparametric inference for ergodic, stationary time series

Nonparametric inference for ergodic, stationary time series. Abstract The setting is a stationary, ergodic time series. The challenge is to construct a sequence of functions, each based on only finite segments of the past, which together provide a strongly consistent estimator for the conditional probability of the next observation, given the infinite past. Ornstein gave such a construction for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SCIENTIA SINICA Mathematica

سال: 2019

ISSN: 1674-7216

DOI: 10.1360/n012018-00137